
/

/
7

!
,f

f

2

##

MAR 8 0 1002

,,AMS.E[4TERED "

/ ,1

ANNUAL REPORT

ON
i

AUTOMATED ASSEMBLY IN SPACE

/

BY

DR. SADANAND SRIVASTAVA

BOWIE STATE UNIVERSITY

BOWIE, MD 20715

FOR

MR. GARY K. JONES -(CODE 731.4)

APPLIED ENGG. DIVISION

GODDARD SPACE FLIGHT CENTER

GREENBELT, MD 20771.

UNDER THE NASA RESEARCH GRANT # NAG5-1054.

(NASA-CR-]90160) GUIOELINES AND RULES FOR

AUTOMATED ASSEMBLY BY ROBOTS IN SPACE Final

Report (Bowie State Univ.) 90 p CSCL 22B

G3#'18

N92-22289

Uncl as

0079885

\
,\

7

GUIDELINES AND RULES FOR AUTOMATED ASSEMBLY BY ROBOTS IN SPACE

ABSTRACT

This report outlines the work of designing the Expert System

for a "Mechanical design system". Two different implementation

approaches have been described. One is coded in "C" and the other

is realized by a software package --"Exsys". The first method has

the advantage of greater flexibility and quicker responses, while

the latter one is easier to develop. This report suggests the

feasible ways to establish a real mechanical intelligent design

system applying artificial intelligence techniques so that the

products designed by this system could best meet the requirement s

for space assembly.

1

In phase one, the essential functions of the mechanical

parts design system have been discussed and defined. The

architecture of the system has been described and some design

issues have also been discussed (such as explanation interface,

knowledge representation, knowledge acquisition and search

implementation). (See Appendix I).

SECOND PHASE

Based on the results of the first phase, we developed a

prototype to simulate the mechanical parts design. The following

flow chart (Fig. 1) describes step by step Work.

Expert System Development

Domain selection -- mechanical parts design (comPleted)

11 Selectiono.e.pertsmechanic°le_erto_complete._tl

II Knowledge representation -- utilizing frames (completed) II

Program development (completed the prototype) II

Fig. 1

EXPERT SYSTEM DEVELOPMENT

Two different methods of development have been pursued.

One of our approaches to develop an expert systems program is to

find a software tool or shell, which is a software package that

provides facilities to aid in expert system development. The second

method is to develop the entire expert system by coding in "C".

I. The First Method: _ _ _]

The "Exsys" is one such software that helps us create an

environment of the expert system with the features we need.

"Exsys" is an expert system shell run under IBM PC/XT/AT. It has

the following features:

A. List the steps needed to create a knowledge base.

B. Enter rules into an expert system.

C. Create a set of rules for a knowledge base.

D. Run an expert system program. •

The advantage of this software is that it is easy to develop

and needs very little coding. So even a non-computer-technical

person can build an expert system by using this software.

It is to be remembered that a fully developed operational

system will need not only an expert system but also an interface

with intelligent CAD system together with a smart database (Fig 2).

3

2. The second method: _ __

The second method is to build an expert system by "C"

coding. The advantage of this approach is its flexibility. It can

easily add a special feature to the system or modify the existing

features according to the users' requirements. It also has a very

good response time.

A: ARCHITECTURE

It' architecture is shown in fig. 2.

I user]

I Database ICentral control _Expert system(AI) I

I CAD I

I Output

Fig. 2

B: The FUNCTIONS

The function of the prototype is shown in Fig. 3

4

l
I design

input mechanical

I
inputmodifications

N

N

design requirements

display the

design part I

I check I

list of violations

N

7-

J

lexplanation andpreferred design I
Y

update

guidelines

N

Y

Fig. 3

I

I redesign

select the violations the

designer wants to get rid of

input design

constraints

and rules?

I y

I modify
guidelines

and rules

I select one of thepossible design schemes

system function diagram

a. Establish the database that can communicate with the AI module.

b. Start design by the user or by the system.

c. Output the design for the user to see if it is

satisfied or not. If it is not satisfied, it can be

modified either by the user or by the system.

d. Search the database to check the design. (There are

two databases. One is the standard database, the other

is the expanded database. Before the user expands the

standard database, these two are actually one.) The

6

user has the option to check his design against either

the standard or the expanded database.

e. If there is any violation checked out, the user has 4

choices

-- modify the design by himself

-- modify the design by the system

-- override these suggestions given by the system

-- expand the existing database to make it more

knowledgeable.

f. It is a loop (Fig. 4) during the design process. The

loop will not terminate until the design is perfectly

satisfied by the user.

design

I
I check I

I
I rees nI

I
Fig. 4

C. Characteristics of this prototype:

(i) Frames are chosen to represent knowledge.

A major benefit of utilizing a frame structure is to

make use of inheritance. When an entity is known to be

a member of a class, its inherited properties can be

assumed. This technique is especially

meaningful for the mechanical parts design. For

instance, the prototype we use here is a table. The

same structure can also be applied in a bench or

anything that has similar structure.

The frame of a table here has 4 slots. They are

table_top, table_leg, leg_number and leg_variation.

The slot of the table_top contains information about

top_shape, top_notch, top diameter if the table_top is

round, the size of the two side if the top_shape is

rectangular or square, the thickness of the top_shape,

and the notch number.

The slot of table_leg contains information about

leg_shape, leg_symmetry and leg length.

The slot of the leg_number contains information about

the number of legs.

The slot of leg_variation contains information about

whether all the legs have the same shape, same size or

not.

8

(ii) knowledge base

The mechanical parts design is based on the knowledge

and experience of expert practitioners of the task.

In this prototype , we use 12 rules to simulate the

guidelines of mechanical parts design. They are:

i: top shape (round or square)

2: diameter of a round table (20 -- 40)

3: short side of a rectangular table (i0 -- 30)

4: long side of a rectangular table (20 -- 50)

5: thickness (1 -- 5)

6: table top should have notches for leg orientation

7: leg number equals to the notch number

8: number of legs (4)

9: all legs have the same size and the same shape

to minimize the parts variation

i0: leg shape (round or square)

ii: leg length (25 -- 30)

12: legs are all symmetrical

Some of the rules are adopted from the guidelines in

real world design, e.g. rule 6, 7, 9, and 12. So this

prototype "clones" human experts to some degree.

(iii) Searching

This program helps user check his design against the

database that stores human knowledge, expertise and

experience. When the number of rules and guidelines

exceeds thousand, the designer has no way but to rely

9

(iv)

on the computer's sophisticated searching techniques.

Decision making

With the feature of decision making, the design can be

done or the design can be modified by the system based

on the knowledge in the database.

In case the design is done by the system, the system

would adopt the middle value of each parameter or the

most commonly used value. In case the design requires

modification by the system, the system would choose

the lower bound value if the value chosen by the user

exceeds the lower bound, or upper bound value if the

value chosen by the user exceeds the upper bound

(Appendix III).

CONCLUSION

We started building an expert system by the following

steps:

i. Selected an application area -- "Mechanical parts

design for outer space assembly".

2. Worked with mechanical experts to decide which

guidelines and rules to be stored in the database.

3. Determined the techniques, knowledge and heuristics

used by the experts for mechanical parts design.

4. Developed a prototype

4.1 Selection of software tool: two different

approaches have been used. One is an "Exsys"

i0

software, while the other is "C" program.

4.2 Selection of hardware

4.3 Knowledge representation

4.4 Knowledge implementation

4.5 Testing and evaluation of the program

The above steps are essential to build expert syste m of

any scale.

So far we have successfully developed a feasible

prototype system. This design philosophy can be

applied in our future work.

FUTURE WORK

We will develop a full prototype system for a reasonable

and meaningful application. We will look for suitable

knowledge representation (could be frames). A suitable

implementation approach would be to combine the software

package with a generic "C" coding. This will reduce the

development period, and will produce a reasonably

flexible system with a high degree of efficiency.

II

i •

•

•

•

•

•

•

•

9,

i0.

ii.

12.

13.

14.

REFERENCE

Advancing Automation and Robotics Technology for Space

Station and for US Economy• NASA Technlcal Memorandum

87566. Submitted to US Congress, April, 1985.

Clarke M., Bronez, Mark A., "Telerobotics for the Space

Station" Journal of Mechanical Engineering, February,
$

1986.

Robotics Servicer Workshop, Goddard Space Flight' Center,

Greenbelt, May, 1986.

Space Station Automation and Robotics Studies - Operator

Systems Interface D483-I0027-I, Boeing Co., 1984.

Space Station Automation Studies - Automation Requirements

derived from Space Manufacturing Concept, Contract

NAS 5-25182, 1984.

Automation Studies for Space Station Subsystgems and

Mission Ground Support, Final Report submitted by Iluge

Aircraft Co., Reference No. F5713, Contract 82-14F, 1984.
. ..

NASA Space Station AI Based Technology Review Project 7268,

SRI Internatlonal, Menlo Park, CA, 1985.

Space Station Automation Study - Autonomous Systems and

Assembly Contract NAS 8-35042, Martin Marietta, 1984.

Space Station Automation Study - Sattellte Servicing

Contract NAS 8-35081. TRN Inc., 1984.

Nevlns, J.L. and Whitney, D.E.:, Information and Control

Issues of Adaptable Programable Assembly System for

Manufacturing and Teleoperator Applications? Journal of

Theory of Mechanisms and Machine Theory, Vol. 12,

pp. 27-43, 1977.

Man Space Flight Study No. 981-10-30-04 Manipulator Systems

for Space Application, Vol. I and If, Argan National

Laboratory, April 1967.

NASA GFSC Plan for Space Statlon Robotics Program, Private

Communication

Dwlvedi, S.N., "Guidelines for Design for Manufacturabillty

and Automation", Proc. of International ,Congress in

Technology and Technology Exchange, Pittsburgh,

Oct. 6-8, 1986.

Dwlvedl, S.N. and Klein, B.R., "Design for Manufacturabillty
_lakes Dollar and Sense" Journal of CIM Review - A Journal

of Manufacturing and Management, Vol. 2, No. 3, pp. 53-59,

1986.

15.

16.

17.

18.

19.

20.

Dwivedi, S.N., Gary Jones, and Travis, E. Use of CAD in

Design and Development of Space Station and Robot

Service" 2nd Int. Conf. on Robotics/Factorles of

Future.

Srivastava, S. and Sinha, V. "WEBXPERT - An Environment for

Interactive Data Analysis" NASA TR 1986.

Srivastava, S. - The NSH SPACE (Budget System) - NASA TR

1983.

Srlvastava_ S. - Demonstration of Frame Base System - NASA

TR 1982.

Srivastava, S. - Autonomous Scheduling Technology for Earth
Orblcal Missions - NASA TR 1980.

5rivastava, S. - Attitude determinations and Filters - NASA

TR 1979.

..i

AN AI SUPPORTED SYSTEM FOR SPACE MECHANICAL PARTS DESIGN

ABSTRACT

This report outlines the work of

Automated Assembly in space. In the first

the second phase of

phase, the guidelines

and rules of mechanical design in space automated assembly has

been discussed in detail. The second phase is the implementation

of those principles.

The goal of this stage is to design and implement a system

suitable" for automated assembly in space. This system , in

essence,is a combination of CAD and AI.

This report deals mainly with the function of the system,

the architecture of the system and also thedesign issues of the

system.

1

I. THE FUNCTION OF THE SYSTEM

The user design the parts

interactive menu. The main menu

functions.

i. design

2. check

3. redesign

for space assembly using an

includes the three major

The first function "design" would invoke the 3D CAD design

module for the user. After the user finishes the mechanical

design, he would go back to the main menu.

Then the user can start the second function "check" to see

if there are any violations of the rules for space assembly. If

there is any, the system would give a list of violations for the

user to check one by one. The function "check" also gives an

explanation of each violation.

If the designer overrides these suggestions. He could modify

the guidelines and rules. He could also choose to redeslgn either

by himself or by the system. Of course, he could redesign the

parts partially by himself and partially by the system.

design I

input mechanical

I input Imodifications

design requirements

I

display the

design part

<

f

\

N

list of violations

explanation and

preferred design

N

/

p

3

Y

L
I redesign

I select the violations thedesigner wants to get rid of

,l
input designconstraints

select one of thepossible design schemes

I finish design

y

modify

guidelines

and rules

J I

Fig. 1 system function diagram

4

Ii. THE ARCHITECTURE OF THE SYSTEM

The system is composed by two major parts, i.e. the CAD and

the AI. There are also an integrated data base and an interface

to connect the two parts as illustrated in figure 2.

user

I lint° face

integratedOB

Figure 2. system structure

The AI in this system is actually an expert system which

consists of four modules i.e. knowledge base, inference engine,

explanation interface and knowledge acquisition. The structure is

illustrated in figure 3.

I knowledge _ >I knowledge base _ explanationacquisition interface interface

I _I infe!encelengine

Figure 3. the structure of an expert system

Here are some brief explanation of the design goals

these four modules.

I. knowledge acquisition is a learning system that

assimilates and accommodates knowledge by two ways. One

is inputing by user while the other is learning from

experience.

2. In knowledge base there is a knowledge base manager

which manages facts and rules in the knowledge base.

-3. The inference engine here is a Prolog system that serves

as a general problem solving system.

4. The explanation interface gives user its advice and let

the user know the inference procedure.

of

iii. DESIGN ISSUES

1. Explanation interface

To design an explanation interface we have

of Prolog codes as an interpreter.

wwm_wmnmmnm_ --

I. solve (true).

2. solve (A,B): - solve (A), solve (B).

3. solve (A,B): - not solve (A).

4. solve (not A): -not solve (A).

5. solve (set of (X,Goal, Xs)):- set_of(X,solve(goal),Xs).

6. solve(A):- system(A),A.

to write pieces

7. solve(A):- clause(A,B),solve(B).

8. solve(A):-

askable(A),not(known(A)),

ask(A,Answer),

respond(Answer,A).

9. ask(A,Answer):- display_query(A),

read(Answer).

10.respond(year,A):- asserta(A).

ll.respond(no,A):- asserta(untrue(A)),fail.

12.known(A):- A.

13.known(A):- untrue(A).

14.display_query(A):- write(A),

write('?').

mm_

Clauses I to 7 can solve directly the user's goal. When the

system cannot solve the problem, clauses 8 to 14 interactively

talk with the user and continue to find the solution based on the

information from the user. The system can also memorize these

information. Each "yes" or "no" answer from the user would add a

new fact to knowledge base that helps find the final goal.

A more complete system allows the user asks "Why?". When the

system asks the user a question, the user can asks back the

system why you have such a question. Then the system will list

the rules that are the parent rules concerning this goal. If the

user asks continuously, then the system will list the rules of

rules that are the grandparent rules. If the user asks the system

"Why?" the third time, the system will list the great grandparent

rules, so and forth. The corresponding codes are in appendix I.

An even more complete system allows the user asks "How this

goal was reached?". The system can explain that this goal was

reached by using which rule and that rule was reached by another

rule or fact, tracing back step by step until the user can

understand the whole reasoning procedure. The corresponding codes

are in appendix 2.

2. Knowledge representation

As all mechanical parts to be designed is the composition of

geometric graphs, they are suitable to be represented by frame

structure. We choose Prolog to implement the knowledge

representation not only because Prolog has perfect reasoning but

also because Prolog can check the consistency of the knowledge.

One of the representation forms is

<Slot_Name>(<Frame_Name>,<Slot_Value>).

Let's take a simple example. A cylinder may be a component of a

part. It can be described as

diameter (cylinder, a)

height (cylinder, b)

up_position (cylinder, c)

down position (cylinder, d)

side_position (cylinder, e). _

The operations of frame include:

8

(I). find: to find a slot value for a given frame name and

slot name.

(2). inheritance: some common property of son frames can be

described by their father frame. It is not

necessary for the son frames to list all the

properties of father frame, because son frames

automatically inherit all the properties of the

father frame.

(3). update: to update the slot value.

(4). demo processing: demo processing can automatically

calculate, add or delete a slot value. For

instance, if a symmetric part has two

holes, the size of one hole is unknown.

When we try to find the size of it, the

demon procedure will be invoked

automatically to give the estimated size by

the property of symmetry. The procedures

for default values are mostly written on

the basis of experience.

(5). default value: the slot value of the son frames can be

default.

Here we introduce some very useful predicates for knowledge

representation. They can tremendously increase Prolog

representation ability.

a. select: to select an appropriate subgoal from a group of

goals.

b. find: to select a rule from a group of rules.

c. match: to find the matching methods and matching

requirements.

d. merge: to combine the subsequent goal with the rest of

goals as a new goal.

e. react: to find a rule based on the subgoal together with

a certain strategy that the rule head must be

matched with the subgoal.

,f. demo: to prove the goal

g. name of: to give the strategy of finding rules.

h. is a: to store the slot value.

i. update: to update the slot value.

j. drop_from: to get rid of old frame.

k. add to: to establish new frame.

Appendix 3 gives the code of demo. It is very useful even in

knowledge acquisition module.

3, Knowledge acquisition

The flexibility of the knowledge base allows experts to add

or modify the guidelines and rules so as to upgrade the system

ability. It is implemented by the module of knowledge

acquisition. Knowledge acquisition has two major functions, one

is knowledge assimilation while the other is knowledge

accommodation.

(I). Knowledge assimilation: If and only if the knowledge is

necessary and compatible with the purpose of establishing the

I0

knowledge base, then the knowledge can be stored into the

knowledge base. In such a case, we always assume that the

knowledge in knowledge base is always correct and can not be

modified.

The steps of knowledge assimilation is as follows:

IprovabilitycheckI

contradiction checkl

p

I redundancy check 1

I independency check

(2). Knowledge accommodation: In this Case, we assume that

the input knowledge is correct. We use the input knowledge to

check and update the knowledge which has already been in the

knowledge base.

We define the following predicates to implement the

knowledge acquisition.

a. input: to input knowledge

b. currdb: the current database

c. ic: the integrity constraints

d. checkdb: to check the input to see if it is assimilable

e. assimilate: to assimilate the input knowledge

f. deduce: to form a deduction mechanism

The corresponding codes are in appendix 4.

11

4. Search implementation

We use a goal stack and a planning stack to implement goal

driven reasoning.

(I). debugging tools: There are three cases that might occur

during search processes.

a. infinite loop or recurrsion

b. reach false goal

c. miss solution

;So we define the following predicates as tools in our search

(a). solve: to terminate the program when the stack is

overflow

(b). false solution: to delete or modify a clause when the

falsity is detected from the provable

tree

(c). miss solution: to trace the failure path so as to find

a goal that is not covered by the

program

The corresponding codes are in appendix 5,6,7.

(2). Model reasoning: Model reasoning includes induction

mechanism. It searches the possible collection of clauses. If a

clause cannot cover a goal, it is cut off together with its

branch. It continues to search until the final goal is found.

The corresponding codes are in appendix 8.

, Heuristic search: As all mechanical parts to be designed

12

are geometric graph, we can use graph information to implement

heuristic graph search.

Let's take just a simple example.

Suppose we are given the theorems about two equal triangle.

(I) tri (A,B,C) = tri (D,E,F):-

angle (A,B,C) = angle (D,F,E),

angle (C,A,B) = angle (F,D,E),

seg (B,C) = seg (E,F).

(2) seg (A,B) = seg (D,E):-

tri (A,B,C) = tri (D,E,F).

(3) seg (A,B) = seg (D,E):-

seg (A,B) = seg (E,D).

The two triangles are as follows:

Now,

in the line that equally divides an angle

that angle are equal.

See the following graph:

if we want to prove that the distances from any point

to the two sides of

So we are given the message:

(I) angle (d,a,b) = angle (d,c,b)

(2) angle (a,b,d) = angle (c,b,d)

13

We want to prove:

:-seg (a,d) = seg (c,d)

The search tree would be structured as follows:

:-seg (a,d) = seg (c,d)

theorem (2) theorem (3)

:-tri(a,d,X)=tri(c,d,Y) :-seg(a,d)=seg(d,c)

theorem(l) theorem(2)

:-angle (a,X,d) =angle (c,Y,d) ,

angle (d, a,X) =angle (d, c,Y) ,

seg(d,X)=seg(d,Y).

(*)

:-tri(a,d, Z) =tri(d, c,W)

(**)

We cannot go further without using graphic information.

However, taking graphic information as heuristic information, we

find the substitution of X and Y with b, but there is no

substitution for Z and W that tri(a,d,Z)=tri(d,c,W). After

cutting off (* *) branch, we minimize our search greatly.

The corresponding codes for heuristic search are in

appendix 9.

14

IV. Conclusion

We've discussed an AI

its architecture as well as

the cornerstones of the system. We also give relevant

the implementation of the system.

supported CAD system, its function,

some major design issues which are

codes fo_

V. References

[I] Begg, Vivienne. Developing expert CAD systems /. London,

Kogan Page, c1984.

[2] Holden, Tony. Knowledge based CAD and microelectronics /.

Amsterdam New York, North-holland New York, N.Y., U.S.A, Sole

distributors for the U.S.A. and Canada, Elsevier science Pub,

1987.

[3] Luger, George F. Artificial intelligence and the design

of expert systems /. Redwood City, Calif,

Benjamin/Cummings Pub. Co, c1989.

[4] Merritt, Dennis. Building expert systems in Prolog /. New

York, Spring-verlag, c1989.

15

Appendixes

Notes of appendixes:

1. The following codes demonstrate the design logic of the

author concerning the design issues.

2. None of the parameters are the actual parameters. But

many of their names are meaningful so as to help the

reader to understand these codes.

3. These codes are used in actual programming design with

only a little modification.

16

mmmwmmmmmllmll_mmlm_mm

APPENDIX 1

solve(Goal):-solve(Goal,[]).

solve(true,Rules).

solve((A,B),Rules):-solve(A,Rules),solve(B,Rules).

solve((A;B),Rules):-solve(A,Rules);solve(B,Rules).

solve(not(A),Rules):-not(solve(A,Rules)).

solve(set of(X,Goal,Xs),Rules):-

set of(X,solve(Goal,Rules),Xs).

r

solve (A,Rules) :-system(A) ,A.

solve(A,Rules) :-clause(A,B),solve(B,[rule(A,B)IRules]).

solve(A,Rules):-

askable(A),not(known(A)),

ask(A,Answer),

respond(Answer,A,Rules).

ask(A,Answer):-

display query(A),

read(Answer).

respond(yes,A,Rules):-asserta(A).

17

respond(no,A,Rules):-asserta(untrue(A)),fail.

respond(why,A,[Rule I Rules]):-

display_rule(Rule),

ask(A,Answer),

respond(Answer,A,Rules).

respond(why,A,[]):-

write('No more explanation possible'),nl,

ask(A,Answer),

respond(Answer,A,Rules).

known(A):-A.

known(A):-untrue(A).

display_query(A):-write(A),write('?').

display_rule(rule(A,B)):-

nl,write('IF'),

write_conjunction(B),

write('THEN'),write(A),nl.

write conjunction((A,B)):-

l,write(A),write('AND'), _

write-conjunction(B).

18

write conjunction(A):-write(A),nl.

mmmmlmmlm_mo_mm_m

APPENDIX 2

how(Goal):-

solvel(Goal,Proof),interpret(Proof).

solvel(true,true).

solvel((A,B),(ProofA,ProofB)):-

solvel(A,ProofA,solvel(B,ProofB).

solvel(A,(A<--Proof)):-

clause(A,B),solve(B,Proof).

interpret((Proofl,ProofZ)):-

interpret(Proofl),interpret(Proof2).

interpret(Proof):-

fact(Proof,Fact),

nl,write(Fact),

write('is a fact in the database'),nl.

interpret(Proof):-

rule(Proof,Head,Body,Proofl),nl,

19

write(Head),write('is proved using

display_rule(rule(Head,Body)),

interpret(Proofl).

the rule'),nl,

fact((Fact<--true),Fact).

rule((Goal<--Proof),Goal,Body, Proof):-

Proof\=true,

extract body(Proof,Body).

extract_body((Proofl,Proof2),(Bodyl,Body2)):-

l,

extract body(Proofl,Bodyl),

extract_body(Proof2,Body2).

extract body ((Goal<--Proof),Goal).

APPENDIX 3

demo(Theory,Goal,[]):-empty(Goal).

demo(Theory,Goal,[Reason_Rest_Proof])

2O

; D

select(Goal, Subgoal, Rest_Goals),

react(Theory, Subgoal, Reason, Continuation_Goals),

merge(Continuation_Goals, Rest_Goals, New_Goal),

demo(Theory, New-Goal, Rest_Proof).

react(Theory, demo(New-Theory, Subsld-Goal, Subsid_Proof),

sbs(Subsid Proof), true)

o

demo(New_Theory, Subsid-Goal, Subsid_Proof).

react(Theory, current(Theory), current(Theory),true).

react(Theory, Subgoal, s(Subgoal, Rule), Rule_Body)

; n

find(subgoal, Theory, Rule),

parts(Rule, Rule-Head, Rule_Body),

match(Subgoal, Rule_Head).

APPENDIX 4

assim(KBNL,Input):-

not(assim kal(KBNL,Input)),

not(assim-ka2(KBNL,Input)),

not(assim ka3(KBNL,Input)),

assim ka4(KBNL,Input).

21

/* K1 Deducility check */

assim kal (KBNL,Input) :-

deduce (KBNL, Input, _) , nl,

write ('Input:'), write (Input),nl,

write ('Input_Knowledge is deducible from DB! '),nl.

/* K2 Contradiction Check (against integrity constraint) */

assim ka2 (KBNL,Input):- X=..[KBNL,Input], assertz (X),
m

G=..[check db, Input, IC, Mes, KBNL], Y=..[KBNL, G],

Y, ic trans (IC, Icr) ,

demo (KBNL, Icr, [[], Cond, Cut, 50], [true,[]]),

write ('Input context:'), write (Input),

nl, write ('Conflicts with the

constraint!'), nl,

write (Mes), nl, retract (X).

integrity

assim Ka2 (KBNL, Input):- X=..[KBNL, Input],
J

retract (X), fail.

: - op (205, xfx, ['- - - >']).

ic trans((Icp- - - > Icq), (Icp, not (Icq))).

ic-trans((Ica; Icb), (Icam, Icbm)):-

ic-trans (Ica, Icam) , ic-trans (Icb, Icbm)

22

ic_trans(((Icp >Icq), Icb), (Icq, not (Icq) ;Icbm)):-

ic trans (Icb, Icbm).

/* K3 Redundancy check in (Db + Input) */

assim ka3 (KBNL, Input):-

Y=..[KBNL,X], Y, noredun (X, Input, KBNL), fail.

noredun((P:- Q), Input, KBNL) :-!, fail.

noredun (X, Input, KBNL): -

Y=..[KBNL, X], Z=..[KBNL, Input], retract(Y),

asserta(Z), demo (KBNL, X, [[True],-,-,50][-,-]),

retract (Z), ! .

noredun (X, Input, KBNL):-

Y=..[KBNL, X], Z=..[KBNL, Input], retract (Z),

asserta (Y), Z.

/* K4 Independency check */

assim-ka4 (KBNL, Input):- Z=..[KBNL, Input], assertz (Z),nl,

write ('new knowledge:'), write (Input),

write (' is acquired! '), nl.

APPENDIX 5

solve (true, D, no overflow).

23

solve (A, 0, overflow ([])).

solve ((A,B), D, Overflow):-

D>0,

solve (A, D, Overflow A),

solve conjunction (OverflowA, B, D, Overflow).

solve (A, D, no-overflow) "-

D>0,

system (A), !, A.

solve (A, D, Overflow) :-

D>0,

clause (A,B),

D1 is D-I,

solve (B, DI, OverflowB) ,

return_overflow (OverflowB, A, Overflow).

solve conjunction (overflow (S) , B, D, overflow (S)).

solve conjunction (no_overflow, B, D, Overflow) :-

solve (B, D, Overflow).

return overflow (no overflow, A, no-overflow).

return overflow (overflow (S) , A, overflow ([A I S])).

24

APPENDIX 6

false solution (A, Clause):-

solve (A, Proof),

false goal (Proof, ClaUSe).

false goal ((A :- B), Clause):-

false_conjunction)(B, Clause), !.

false goal ((A :- B), (A :-BI)):-

extract_body (B, BI).

false-conjunction ((A :- B), Bs), clause):-

query_goal (A, false) ,! ,

false goal ((A :- B), Clause).

false-conjunction ((A :- B), Clause):"

query_goal (A, false) , ! ,

false goal ((A :- B) , clause) •

false conjunction ((A, As), clause):-

false conjunction (As, clause).

APPENDIX 7

missing_solution ((A, B), Goal):- l,

(not (A), missing solution (A, Goal);

A, misslng_solution (B, Goal)).

missing_solution (A, Goal):-

clause (A,B), query clause ((A :- B)), ! ,

misslng-solution (B, Goal).

missing_solution (A, A):- not (system (A)).

query clause (Clause):-

write ('Enter a true ground instance of'), nl,

write (Clause) , nl,

write ('if there is such, or "false" otherwise') ,nl,

read (Answer), ! , check answer (Answer, Clause)

check answer (false, Clause):- J, fail.

check answer (Clause, Clause) :- !

check answer (Answer, Clause) :-

write ('illegal answer'), ! , query_clause (Clause).

26

APPENDIX 8

model inference (KBN, IC name, Concept):-

nl,

ask for('Next fact(sentence, true/false)or end',Fact),

(Fact=end;

(Fact=check -> model_inferencel (KBN, Ic_name,-);

(Fact= (P,V), verify (P=Concept);

nl,

write ('* Error concept from.'), fail),

! I

(Fact= (P,V),

(V=true; V=false) ->

assert fact (P,V),

model inference (KBN, Ic name, P),

write ('! illegal input') , nl), ! , nl,

model inference (KBN, IC_name, Concept))).

model inference (KBN, IC name, Concept):-
m

nl,

ask_for('Next fact(sentence, true/false)or end',fact),

(Fact=end;

(Fact=check -> model_inferencel(KBN,Ic_name,-);

(Fact=(P,V), (V=true; V=false) ->

assert fact (P,V),

model inferencel (KBN, Ic name, P);

27

write (' I illegal input'), nl), J , nl,

model inference (KBN, IC name, Concept))).

model inferencel (KBN, IC name, P) "-

write ('checking fact (s) ...'),

(fact (P, false),

model-demo (KBN, P) ->

nl, false solution (KBN,IC name, P),

model inferencel (KBN, IC name,);

/* Too Strong */

(fact (P, true),

not (model demo (KBN, P)) ->

nl, mlssing_solution (KBN, IC_name, P),

model_inference (KBN, IC_name, _),

/* Too Weak */

write ('no error found.') , nl)).

verify (P):- not (not(P)).

ask for (Mess, Fact):-

write (mess), nl, read (Fact)

APPENDIX 9

/* Heuristic search THEOREM PROVER */

28

go:- asserta(step(0), heuristic([pair(l,goal)]).

/* Top Level Stuff */

heuristic (Agenda):-

member(pair(0, Empty), Agenda).

heuristic([pair(Score, Current) I Rest]):-

step(X),

X1 is X+I,

retract(step(_)),

X<I0,

asserta(step(Xl)),

nl, write('step number is:'), write(Xl),nl,

settofl(Clause,successor(Current,Clause),New Clause),

add to agenda(New Clause, Rest, New Agenda),

heuristic(New Agenda).

successor(Current,

successorl(Current,

vet(Clausel, Clause,

message(Clausel).

Clause):-

Clausel),

modell),

successorl(Current, Clause):-

factor(Current, Clause).

successorl(Current, Clause):-

29

is clause(Parent, ,),

(resolve(Current, Parent, Clause);

resolve(Parent, Current, Clause)).

/* Rules of Inference */

resolve(Parentl, Parent2, Resolvant):-

is clause(Parentl, Consequentl, Antecedentl),

is clause(Parent2, Consequent2, Antecedent2),

select(Proposition, Consequentl, RestConsel),

select(Proposition, Antecedent2, RestAnte2),

append(RestConsel, Consequent2, Consequent),

append(Antecedentl, RestAnte2, Antecedent),

gensym(resolvant, Resolvant),

assertz(is clause(Factor, OneGone_ Antecedent)).

factor(Clause, Factor):-

is clause(Clause, Consequent, Antecedent),

select(Propositlon, Consequent, OneGone),

select(Propositlon, OneGone, TwoGone),

gensym(factor, Factor),

assertz(is clause(Factor, OneGone, Antecedent)).

factor(Clause, Factor):-

is clause(Clause, Consequent, Antecedent),

select(Proposition, Antecedent, OneGone),

select(Proposition, OneGone, TwoGone),

30

gensym(factor, Factor),

assertz(is clause(Factor, Consequent, 0neGone)).

/* Print Message */

message(Clause):-

is clause(Clause, Conse, Ante),

write('New Clause'),

write(Clause),

write('is:'),

write(Ante),

write('->'),

write(Conse), nl.

/* Evaluation Function */

add to agenda([], Agenda, Agenda).

add_to_agenda([Name I Rest], Agenda, NewAgenda):-

(not(in(Name)), Z; true),

evaluate(Name, Score), l,

insert into agenda(Agenda, Score, Name, MidAgenda),

add to agenda(Rest, MidAgenda, New Agenda).

add to agenda([Name _ Rest], Agenda, NewAgenda):-

add to agenda(Rest, Agenda, NewAgenda).

31

evaluate(Name, Score):-

is clause(Name, Consequence, Antecedent),

length(Consequence, C),

length(Antecedent, A),

Score is C + A.

insert_into_agenda([], Score, Name, [palr(Score, Name)]).

insert_into_agenda([pair(Scorel, Namel)l Rest], Score,

Name, [pair(Score, Name), pair(Scorel, Namel)JRest]):-

Score=<Scorel,

b

in,art into agenda([XlRest], Score, Name, [X i NewRest]):-

insert_into_agenda(Rest, Score, Name, NewRest).

/* Loop Check */

in(Clause):-

is clause(Clause, Conse, Ante),

is clause(Another, Conse, Ante),

Clause\= = Another,

retract(is clause(Another, Conse, Ante)).

/* Semantic Checking */

vet(Clausel, Clause, Interp):-

Is_clause(Clause, Conse, Ante),

constants(Consts),

32

checklist(instantiate(Consts),

checklist(instantiate(Consts),

false clause(Conse, Ante,

gensym(instance, Clause),

assertz(is clause(Clause,

Conse),

Ante),

Interp),

Conse, Ante)).

instantiate(Consts, Constant):-

atomic(Constant).

instantiate(Consts,

vat(Variable),

instantiate(Consts,

Variable):-

member(Variable,

Complex):-

not(atomic(Complex)),

novar(complex),

Complex=..[Sym I Paras]

checklist(instantiate(Consts),

Consts).

Paras) .

false clause(Consequent, Antecedent, Interp):-

checklist(meaning(interp, false), Consequent),

checklist(meaning(Interp, true), Antecedent).

meaning(Interp, Value, Constant):-

atomic (Constant),!,

e(Interp, Value, Constant).

meaning(Interp, Value, Complex):-

33

Complex=..[Sym I Paras],!,

maplist(meaning(Interp), Vals, Paras),

Complexl=..[Sym I Vals],

interpret(Interp, Value, Complexl).

/* General Utilities */

append([], List, List):-!.

append([Car I Cdr], List, [Car I Ans]):-

append(Cdr, List, Ans).

member(E,L):-

append(Ll, [E I L2], L).

select(E,L,R):-

append(Ll, [E I L2], L),

append(Ll, L2, R).

/* Logical */

setofl(X, P, Set):- setof(X, P, Set),!.

setofl(X, P, []).

checklist(P, []):-I.

checklist(P, [Y I YList]):-!,

P=..[Sym I XList],

append(XList, [Y], Paras),

Q=..[Sym I Paras],

34

Q,

checklist(P, YList).

maplistl(P,[].[]):-!.

maplistl(P, [Y I YList], [Z I ZList]):-!,

P=..[Sym I XList],

append(XList, [Y,Z], Paras),

Q=..[sym I Paras],

Q,

maplist(P, YList, ZList).

/* Generate New Name */

gensym(Prefix, Var):-

var(Var), atomic(Prefix),

get(Prefix, N),

N1 is N+I,

asserta(latest(Prefix, NI)),

concat(Prefix, NI, Var).

get(Prefix, N):- retract(latest(Prefix, N)),!.

get(Prefix,0).

concat(Nl, N2, N):-

name(Nl, Lsl),

name(N2, Ls2),

35

append(Lsl, Ls2, Ls),

name(N, Ls).

/* Example Specific Stuff */

/* Axioms of Negated and Conjecture */

is_clause(reflexlve, [equal(X,X)], []).

is_clause(funny, [equal(X, Y)], [equal(X, z),equal(z, y)]).

is_clause(twisted, [equal(U,W)], [equal(U,V), equal(W,V)]).

is_clause(hypothesis, [equal(x,y)], []).

is_clause(goal, [], [equal(y,x)]).

/*Constants */

Constants([x,y,z]).

/* Interpretation Modell */

interpret(modell, 2, x).

interpret(modell, 2, y).

interpret(modell, 3, z).

interpret(modell, true, equal(X, Y)):-

X= =Y

interpret(modell, false, equal(X, Y)):-

X\= =Y.

36

EXSS : buildmg an e.xp e._rt 5Fstem.

E }[SY S has a v._,_-ler,m-,_e ,-_,tc:a!_-:..g__es .m-,-tcm-_be used for l:,_..!,_ng e._%,e-ct s_-,_e.m.

E X SY S,a]lo;,';s v,:,',]to vse both t e:,:t q_]a_ e'c,:,,:'a_aet!/pe ,::onu_.;orr_-;,-:.T],_'.has _,;,;e_]sed in le_ son i.
and also m,athemaficat ezcgces:,-ions rz,_h va-mables. },&_t_#,,.'aei,ab|e _q:,L-es-,fions Tn E "."[SY S c_¢ .wc
several .m-eas. Tl-_ere can be bot_ ?uTn-_ericand -Wc+.ng'-'._d.g,les. 'L.'vadable can 1-_,m,.'eavalue
assor.4ate.,] _,,',,fitl-Jft..or -.;Ican _,e a text note. Tri;qOTv::metmc, e;,_;c,nen.,.%_l,],:,g and sq_]a-reroot
_m-_c:'6ons ace "l:,uflt+,ntet?_eiz,rc:gc._,m.

,ere arema:n!, _,va!;; Tn _/.#_ic?,E 3_iS7'._-1al]o_,,',,_sto e:_ _T]ies. _.,-e _arameler :Tnthe
ezcDe_ s!;,_-.-temcan be dn.-_.nged. L-the ez,zce;,9on i_,:l-_e,;,c,z,bab_!_, mo,Je, it c,__:crnotbe c:l-_.mTged
a_.er it Inas i:_:eenseJected ,:rnc.e. _,e e,_'_ng is not vec!; ;::om#li¢,=,ted. _,_ce ,_:cetl-rr ee 1:,act
sc:ceen.Un the |:_.ffh.m-_d-,-i.:]eare theL_Z.'les.L]nthe-_9,g]-_.tist{_r_q_]a;_ec.-Atthe l:,o_ ,_-.:mace

the choicestocthe ,:,!:,erahonon t-he.P,_es can l:_e.m__,_ed_]_ete,]or modffie,_t]qqesame

v,,_b{he qua.l_ecsand 'v'a_4,a_fies._ec e,_,_r:g-,_7]]e_ft.can l:__ete-Se:]I:.,!_cl-_oo-,ffngthe "r_]n"

Ol_,tio'n. Tl-:e "_,:,ce/e:_" c,#_on -a.,'es data c,n the de.,-f:-ed dO.,,'e. The :_cecti;z,r_s ._ce '...'et'y
_c.a]g_qt[ocr.'.._ac,].__ndeasp to{o_,:,_..._.

E][SV Sis. c@able ot ,__.,-_,fr_,#a v,#de ranqe o£ c ak::]t_c,r.,.al t a-;:t::_,butt.there are sorr,.e
thTngsl:,e!;o,n_ft.;c@ab{_es. E][_Y S ha- tk.e.g,CPt,.!;to c,_qext.ern.;_co_e,m-nsto _o -7.]ch¢',_.cit'_:.

C_,.T_, .¢.,_._., . • _ :,-_ .-,-,-.-_:,I-1.-%,-_,_÷-i_l-,--lq-_e_,:t.e_ma]l:,ro,_ZcamTr'%'pa_]afato E T_-.{,,, ;,__data ,_,_,..or -,_._......_...........L,,,,._cI]:,-ton_

proy-,-am fco qr._T_,hics,-,r c._lc_]]._tions o-r obtafn J:_t._ ,:,r ,:,]:_,t,_r,,_i.at.__from ,_ut,:,m,_tic tex-t
eq_E.;ment.

E]-r Sy S I', as t_,,e al:.f_!; t,:, ,_-:,a]i_Tm,:,A an,;, ,.¢ _,-D FJ:, -ycogcam .:_sa-n_.-..,._, ,._i1-,_,_.__L,_.
Tz,_l-_er_a_] e:,:tetq]al Trcot_caTnis ca._ed, E 3-[SY Sr ema/n-_-;-ce:fident i_-_tT_e-n-:emor !_,a;n,] tT_ee:,_em a]
1)rogcaTn is loaded tn t.l-_el-dgl-;er memor,u. T..:._,e-ntT_ee:,_e;';-;,-_-.li:,co,7c:-<v,is #ni_.lTed and e:Os as
i[it. v;ere gofng to I) 0 S. it..c ei_ztm.--,fn-.-tead to E 3-[S"-:fS.

Exterr_al pr o,.-,_:n-_s_re.+.,mmdata in._ E _-_"_,"''...,':1-,v_.w'__-_.,-,]" #,.to d-u,':.,:."--_file h-__':'':.,C'I.- THis
e'.nat:,les E _r,.--,z ,_ -.. - " -, _ - "_-., z., t..-, 5r.'-mfFoJr_ic,9,te r,-,_.]-_t] _ ,_--g_:.,. F_Zf:'tbeL" Ot _.rL'O,_'_',_Tn5tO ,::omm_znicate r",_.1-1

tl-_etr='Cge_.'4.,-,_m-,bec ,:,itiz;cogcaTns a,-,.,-It!-_e_- _............ " - " "..Xt...-.:_,._.I- - '- ,4,.z_;_I_"-.]:::a,]er_ Tn i]-:e haqhec i-n e;-:-:oc,g.

WheT, the extduna] 9cogc.m-nis_-dshed ,mmJe:._sa:; _ _ 77e'L',_'3gofng to D 13S,_ cetl%cT-,Sf_-_earl
toEXSYS.

_" " _,"" },,. r,,,'rt_pq ..:7f,n ,-_,_:;_:: [1"]8TFIz-_..... II. ,., ,l:.F.xte,_mal_gc,_-,gc.wr_s're_mmdatato E :_.::-- -,._........._.... " ,',,.-_:: ..-r-w_-
e'n,-]b]e 5 E .,,...,:r,:_,-_,-;,to -:c:n-n-n_zn{>_fe r.,,_]q fh_.. -[,_.cqest,.,'"_w-_---._.......................n*, ,-;co qrca,'7-r;. _i_: "/'-"-"- _+ rr_ *_-,-

reb;m-_e,J ,-,,:,tada-n_:n,]-: o-nt'ne t;m,e o{ the ez._e,m.#_,::6i7. '=-..... -_- - --_" -_ _ i i iL-u_ r:,-]q u_. 3 L:d;i to .Tt.qe;<t 8l':'I,_}

,:],_.taisce__u-r:e:]]:-reb..Tm-,.e:]e.--,a CjcrcV. {r-E'/.,'..:..e,.ib'.-'t'hen_zn,-,ber ,::+_q_z.a-_.-_-.c,-:cx,'e,_._b]e.

If t]'te -"+_............ "- -'-;- "_- " -v-_ - -.t'.;'.'-._=i t,_i i._i -u!_T_.di i Itb ;i_il i.U ,] :.1Fit]i@'d_d,'._.,dL fit" ',/,_i.7,_-ii8.

OftiGIllltL PAO'EIS
/. oF Poor quA

T, _--hr ,'e_,-(r:ri'_.i-'#_',",0-__'_-- _......"....''-........"...............-+":"__-* - ;- *--...................* _........Yr

m the ,_.:,,_,_.,..,_.*a,- Z _-[";,_'_,_':.,_,',_.!i......_..X,:,rn,=_._c,__ii,_!:,,:,_:t,:,,,."t]',_,t_e ,-:-_,J.......,_.._,,_,,.,...-,r'.,_.T;_:.'-;,.--

"_ _',V _ _? _" -_----.J c_._.- _.--,_ - + _ -] - - _ -. _ 4 - _- - _- ._ _ _ -]- . +_.._

[L:L" ,.:L':_'--:u.;-!; 4 ;:_'_'-',-'_'! _:/: L_iiF.::. _'_-_ '"- -'- '- -_" _ I- -

a _,qaTi_:-:'...................................

ORIGI!_L PA_E !S

OF POOR QUAi.ITf

Subject:

TABLE EXPERT

A_thor:
YOUSUF AHMAD

Starting text:

WELCOME

T O

TABLE
EXPERT

The TABLE EXPERT makes

recommendations whether or not your supplied data can be used to

design a square or circular table. On some occasions the system may
even request you to update the rules or qualifiers or even the values.

Ending text:
RECOMMENDATIONS

Based on the answers provided the TABLE EXPERT makes

the following recommendations:

Uses all applicable rules in data derivations.

VARIABLES:

I TOP SHAPE

type of top shape of the table

String variable

2 LEG SHAPE

shape of table legs

String variable

3 LENGTH EACHSIDE

length of each side

Numeric variable

4 NUMBER OF NOTCHES

number of notches on table to fit the legs

String variable

5 LENGTH1

length of each side

Numeric variable

& LENGTH EACHLEG

length ofeach leg

Numeric variable

7 NOTCHES

number of notches

Numeric variable

8 LEG LENGTH

Numeric variable

9 NUMBER OF LEGS

number of legs of the table
Numeric variable

10 COUNTER

keeps count of successes

Numeric variable

11 DIAMETER

the diameter of the table

Numeric variable

RULES:

3

RULE NUMDER: i

IF:

designer is use_

and table is squ_re

THEN:

and
dimension !:ey is o_ne s_.dc_e

[TS] IS GIk,'EN TIdE VALUE i_'TB]

RULE NUMBER:

IF:

di_enslon key is c_e side

THEN:

and

[LI] IS GIVEN T!.IE VALUE ELI]

design objective is square

RULE NUMBER: 3

IF:

and

[NL] <= 6

dimension key is one side

THEN:

design objective is square

RULE NUMBER: 4

IF:

and
and
and
and

[TS] "SQUARE"
dimension key is one side
design objective is square
[N] = [NL]

THEN:
You can design a square table - Probability=l

RULE NUMBER:5

IF:
designer is user

and table is circular

THEN:

and
dimension key is diameter
[TS] IS GIVEN THE VALUE ITS]

RULE NUMBER: 6

IF:

dimension key is diameter

THEN:

and

design objective is circular

[D] IS GIVEN THE VALUE [D]

RULE NUMBER: ?

IF:

and

[NL] <= 6

dimension key is diameter

THEN:

design objective is circular

RULE NUMBER: 8

IF:

and

and

and

and

designer is user
[TS] = "CIRCULAR"

[N] = [NL]

dimension key is diameter

design objective is circular

5

THEN:

You can design a circular table - Probability=l

RULE NUMBER: 9

IF:

[TS] <> "SQUARE"

and table is square

THEN:

Your choice of topshape is invalid - please try again - Probability=l

RULE NUMBER: i0

IF:

[TS] <> "CIRCULAR"

and table is circular

THEN:
Your choice of topshape is invalid - please try again - Probability=l

RULE NUMBER: 11

IF:

[N] <> [NL]

THEN:

Number of notches does not match the number of legs - Probability=l

RULE NUMBER: 12

[TD] = "SYSTEM"

THEN:
designer is system

RULE NUMBER: 13

IF:

and
designer is system
[U] = 0

THEN:
get info from last user

ELSE:
get info from second last user

RULE NUMBER: 14

IF:
[TD] = "USER"

THEN:
designer is User

QUALIFIERS:

7

shape of leg is

circular

mot circular

Used in rule(s):

2 table is

square
circular

Used in rule(s): 5 9 10

3 length of each side does

exist

not exist

Used in rule(s):

4 design objective is

square
circular

Used in rule(s): (2) (3) 4 (6) (7) 8

5 dimension key is

one side

diameter

Used in rule(s): < 1) 2 3 4 (5) 6

6 designer is

user

system

Used in rule(s): 1

(14)
4 5 8 12) 13

7 RUN(DATAGEN) get info from

last user

second last user

Used in rule(s): (13) [13]

9

CHOICES:

1 You can design a square table

Used in rule(s): (4)

2 You can design a circular table

Used in rule(s): (8)

3 Your choice of topshape is invalid - please try again

Used in rule(s): (9) (10)

4 Number of notches does not match the number of legs

Used in rule(s): (11)

to

FORMULAS :

I [TOP SHAPE] = SQUARE

Used n rule(s):

2 [LEG SHAPE] = CIRCULAR

Used n rule(s}:

3 LENGTH OF EACH SIDE

Used n rule(s}:

4 [TCP SHAPE] = SQUARE

Used in rule(s):

5 [LEG SHAPE] = CIRCULAR

Used in rule(s):

6 NUMBER OF NOTCHES

Used in rule(s):

7 LENGTH OF EACH SIDE EXISTS

Used in rule(s):

8 TOP SHAPE IS NOT SQUARE

rl

9 [f_'- _ _'2"_ -I_,'._ . EACHSIDE] = YES

Used in rule(s):

.i0 [LENGTH EAOHSIDE] = YES

Used in rule(s):

11 [LE_,!GTHI] <= 6

Used. in rule(s):

12 [LE,.._TH EACHLEG] <= 3

Used i_l rule(s):

13 [LEG LENGTH] <= 3

Used in rule(s):

14 IT09 SHAPE] = SQUARE

Used in rule(s):

15 [LENSTH EACHSIDE] <= 3

Used in rule(s):

16 [NOTCHES] <= 6

U_ed in rule(s):

17 [L:-'?,;_T;i EAS!ISIDE] <= 7

-,-,-;_ i;I ;-ulee(s) :

18 [_I_ER OF LEGS] <= 6

UJ_d i;7 Fule(s);

19 [NUMBER OF LEGS] = [NOTCHES]

Used i_l rule(z):

20 3

Used in ru!e(_):

el [NOTCHES] <= 6

Used in rule(s):

ee [NUMBER OF LEGS] <= 6

Used in rule(s):

e3 [NOTCHES] <= &

Used in rule(s):

24 [NUMBER OF LEGS] <= 6

Used in rule(s): 3

_5 [NOTCHES] [NUMBEROF LEGSJ _

Used in rule(s):

26 [NOTCHES] = [NUMBEROF LEGS]

Used in rule(s):

27 [NOTCHES] = [NUMBEROF LEGS]

Used in rule(s):

28 [COUNTER] + 1

Used in rule<s):

29 [COUNTER] + 1

Used in rule(s):

30 [COUNTER] + 1

Used in rule(s):

31 [COUNTER] = 4

Used in rule(s):

32 [TOP SHAPE]

Used in rule(s):

33 [LENGTH EACHSIDE]

Used in rule(s):

34 [NOTCHES]

Used in rule(s):

35 [NUMBEROF LEGS]

Used in rule(s):

36 [TOP SHAPE] = SQUARE

Used in rule(s):

37 [TOP SHAPE]

Used in rule(s):

38 [TOP SHAPE] = "SQUARE"

Used in rule(s): 4

39 [TOP SHAPE]

Used in rule(s):

40 [TOP SHAPE]

Used in rule(s): (1)

41 [TOP SHAPE]

t,5

42 [DIAMETER] <_ 6

Used In rule(s):

43 [NOTCHES] = [NUMBER OF LEGS]

Used In rule(s): 4

44 [NUMBER OF LEGS] <= 6

Used In rule(s): 7

45 [TOP SHAPE] = "CIRCULAR"

Used in rule(s): 8

46 [NOTCHES] = [NUMBER OF LEGS]

Used In rule(s): 8

47 [NOTCHES]

Used In rule(s):

48 [LENGTH1]

Used in rule(s): (2)

49 [DIAMETER]

Used in rule(s): (b)

5O [TOP SHAPE] <> "SQUARE"

Used in rule_s): 9

51 [TOP SHAPE] <> "CIRCULAR"

Used in rule(s):

52 [TOP SHAPE] <> "CIRCULAR"

Used in rule(s): 10

53 [NOTCHES] <> [NUMBEROF LEGS]

Used in rule(s): 11

/*

This program is a simulation of the process of space mechanical parts design
**

We simulate the mechanical parts design by designing a table.

We simulate the guidelines and rules as the design specifiaction of a table.

The design specification of a table is as follows:

I: top shape (round or square)

2: diameter of a round table (20 -- 40)

3: short side of a rectangular table (i0 -- 30)

4: long side of a rectangular table (20 -- 50)

5: thickness (1 -- 5)

6: table top should have notches for leg orientation

7: leg number equals to the notch number

8: number of legs (4)

9: all legs have the same size and the same shape

to minimize the parts variation

i0: leg shape (round or square)

ii: leg length (25 -- 30)

12: legs are all symmetrical

Algorithm:

step i: Input the specification range of a table by system.

step 2: User starts design by choosing:

i. design by himself

or 2. design by the system

step 3: Display the designed table.

If the user is not satisfied with this design he can choose

i. modify his design by himself

or 2. modify the design by the system

if the user is satisfied with this design go to step 4.

step 4: Check the design by system to see if there are any violations.

Here, the user can choose either
i. check his design against the standard database

or 2. check his design against the expanded database

step 5: If there are no violations go to step 8.

step 6: If there are any violations
list the violations as well as the preferred design.
Here, the user can choose

I. modify the design by himself (go to step 3)
or 2. modify the design by the system (go to step 3)
or 3. override the suggestions and finish his design

(go to step 8)
or 4. expand the existing database

step 7: go to step 3

step 8: Finish the design.
Here, the user can choose

i. finish his design and exit the system
or 2. finish his design and start another design

This program is written in an interactive mode giving advice
during the design process.

This program is written with "C" in a concise way.

The frame representation for the "table" can also be used by some oth_
object design which has the similar components like a bench.

This program is composed by 9 modules:
i. main: control all the other functions.
2. initial: set the variables of the extanded database the same as

standard database.
3. clear: clear the screen.
4. inputdata: accept data from keyboard and turn them into

the appropriate format that the program can accept.
5. sysdesign: design by system with the data from the standard database.
6. display: display the designed table
7. check: check the design against the rules and guidelines in

either standard database or extanded database.
8. update: allow the user add more rules in the existing database.
9. redesign: the system modify the user's design so as to meet the

requirements of the standard database.

2

,°

,!

#include <stdio.h>

#include <string.h>

#define MAXLEGS i0

char x;

/* x is used for accepting the return key */

int wl=0, w2=0, w3=0, w4=0, w5=0, w6=0, w7=0, w8=0, w9=0, wl0=0, wll=0, w12=0;

/*

wl to w12 are _sed for violationl to violation 12.

wi=0 means no violation, wi=l indicates that there is a violation.

*/

float r0=0, rl=l, r2=5, r3=10, r4=20, r5=25, r6=30, r7=40, r8=50,

rm0, rml, rm2, rm3, rm4, rm5, rm6, rm7, rm8;

int r9=4, rm9;

char rml0, rml!, rml2;

/* ri are for the legal design specification stored in datndard database*/

/* rmi are for the modified specification stored in expanded database */
/*

r0 is set to 0.

If the sides of the table equals r0 that means the shape of

the top is neither square nor rectangular.

rl stands for the lower bound of Thickness;

r2 stands for the upper bound of thickness;

r3 stands for the lower bound of the short side of the top;

r4 stands for the lower bound of the long side of the top

and the lower bound of the diameter;

r5 stands for the lower bound of the leg length;

r6 stands for the upper bound of the leg length;

r7 stands for the upper bound of the diameter;

r8 stands for the upper bound of the long side of the top;

,/

int i,j;

/* i is the leg number */

/* j is violation number.

j=0, there is no violation;

j>0, there are some violation;

*/

char topshape[12], legshape[12];

typedef struct
{

char top shape[12], top notch;
float diameter, sidel, slde2, thickness;

int notch num;

} tabletop;

typedef struct

{
char leg_shape[12], leg_sym;

float leg_length;

} tableleg;

struct table

{
tabletop top;

tableleg Ieg[MAXLEGS];

int leg_num;

char leg_variation;

} t;
/,

t is the table to be designed.

*/

main()

{

/* This main function decides all the flow control

implementing the programmer's algorithm.

char c, cO, cl, c2 ;

initial();

/*
step 1

*/

loop0: initiall();

c='0';

/*

*/

while (c!='l' && c!='2')
/*

step 2

*/
{

The user is going to design a table other than the first one

therefore it is necesary to reset the initial value.

4

printf ("\n\n\n") ;
printf("l -- design the table by yourself\n");
printf("2 -- design the table by system\n");
printf("Please enter your choice\n");
scanf ("%c%c", &c, &x) ;
clear () ;
if (c==' i')

inputdata () ;
if (c=='2 ')

sysdesign () ;
}

loopl :
c0='n' ;

while (c0!='y')

{
/*

step 3

*/
clear () ;

displaydata () ;

printf ("\n\n\n") ;

printf("Are you satisfied with this design specification ? \n");

loop2:

printf(" 1 -- satisfied and checking the rules and the guidelines\n");

printf(" 2 -- modify the design by yourself\n");

printf(" 3 -- modify the design by the system\n");

printf(" Please enter your choice\n");

scanf("%c%c",&c0,&x);

clear();

if (c0=='l')

goto chk;
else

if (c0=='2')

{
inputdata();

goto loopl;

}
else

if (c0=='3')

{
sysdesign();

goto loopl;

}
else

goto loop2;

chk:

check();

/*

5

step 4
*/
if (j!=0)

{
printf("\n\nAre you going to override these suggestions ? \n");

printf("l -- modify your design by yourself\n");

_printf("2 -- modify your design by the system\n");

printf("3 -- override these suggestions and finish design\n");

printf ("4 -- expanding the existing database\n") ;

printf("Please enter your choice\n") ;

printf("Hit '0' to finish your design\n");

scanf ("%c%c", &cl, &x) ;

clear () ;

if (cl=='l ')

{
inputdata () ;

goto loopl;

}
if (Ci=='2 ')

{
redesign () ;

goto loopl;

}
if (CI==' 4 ')

{
update () ;

goto loopl;

}
else

goto end ;

}
else

{
end:

step 8

printf("l -- finish the design and exit the design system\n");

printf("2 -- design another table\n");

scanf("%c%c",&c2,&x);

clear();

if (c2=='2')

goto loopO;
else

{
printf(" Congretulation!\n\n");

printf(" You have finished designing the table.knkn");

displaydata();

printf("\n\n\n\n Hit 'ENTER' key to exit.\n\n\n");

scanf("%c",&x);

clear();

}

6

}
}

initial()

/*

Set the initial value of the database.

Let the expanded database the same as the original database.
*/

{
rm0=r0;

rml=rl;

rm2=r2;

rm3=r3;

rm4=r4;

rm5=r5;

rm6=r6;

rm7=r7;

rm8=r8;

rm9=r9;

rml0=rmll=rml2='y';

printf("You are entering the computer designing system\n");

printf("Your are now designing a table\n");

printf("There are 12 rules stored in the database for the table designing\n");
printf("They are as follows:\n");

printf("l: top shape (round or square)\n");

printf("2: diameter of a round table (20 -- 40)\n");

printf("3: short side of a rectangular table (I0 -- 30)\n");

printf("4: long side of a rectangular table (20 -- 50)\n");

printf("5: thickness (1 -- 5)\n");

printf("6: table top should have notches for leg orientation\n");

printf("7: leg number equals to the notch number\n");

printf("8: number of legs (4)\n");

printf("9: all legs have the same size and the same shape\n");

printf(" to minimize the parts variation\n");

printf("10: leg shape (round or square)\n");

printf("ll: leg length (25 -- 30)\n");

printf("12: legs are all symmetrical\n");

}

initiall ()

/*

*!

This function is to set the initial value for the table to be designed.

It is especially necesary when the user wants to design a table other
than his first one.

7

{
int k;

/* k is the number of legs */

strcpy(t.top.top_shape," ");

t.top.top_notch=NULL;

t.top.diameter=0;

t.top.sidel=0;

t.top.side2=0;

t.top.thickness=0;

t.top.notch num=0;

for (k=l; k<MAXLEGS; k++)

{
strcpy(t.leg[k].leg_shape,"

t.leg[k].leg_sym=NULL;

t.leg[k].leg_length=0;

}
t.leg_num=0;

t.leg_variation=NULL;

}

,,);

clear()

/*
This function is to clear the screen.

*/

{
printf("\n");

}

inputdata()

/* _ _

This function is to create an environment for the user to input

the parameters of the table being designed.

,/

{
char cl, c2;

i=l;

printf(" Now let's s£art input Or m0dify the: data of £he table,_nin");

printf *** ;

printf ("*********\n") ;

printf("Do you want to input or modify the table top? (y/n)\n");

scanf ("%c%c", &cl, &x) ;

8

if (cl--='y')
{
printf("Do you want to input or modify the shape of the table top?");

printf (" (y/n) \n") ;

scanf ("%c%c", &cl, &x) ;

if (cl=='y')

{
printf("What kind of shape do you like for the table?\n");

printf("(The suggested shape is either round or square ");

printf("for the assembly convenience)\n");

scanf ("%s%c", t. top. top_shape, &x) ;

}
if (strcmp (t.top.top_shape, "round") ==0) c2='a' ;

if (strcmp(t.top.top_shape,"square")==0) c2='b';

if (strcmp(t.top.top_shape,',rectangular")==0) c2='c';

switch (c2)

{
case' a' :

printf("Do you want to input or modify the diameter ");

printf("of the round table (y/n)?\n") ;

scanf("%c%c", &cl, &x) ;

if (cl=='y')

{
printf("Please input the diameter of the table.\n");

printf("(The suggested diameter is 20 -- 40)\n");

scanf ("%f%c", &t. top. diameter, &x) ;

}
break;

case'b' :

printf("Do you want to input or modify the size ");

printf("of the table side?(y/n)\n");

scanf("%c%c", &cl, &x);

if (cl=='y ')

{
printf("Please input the size of the table side.\n");

printf("(The suggested table side is I0 -- 50)\n") ;

scanf ("%f%c", &t.top. sidel, &x) ;

t.top, side2=t.top, sidel;

, }
break;

case'c' :

printf("Do you want to input or modify the size ");

printf("of the table sides?(y/n)\n");

scanf("%c%c", &cl, &x);

if (cl=='y')

{
printf("Please input the size of short side.\n");

printf("(The suggested short side is i0 -- 30)\n");

scanf ("%f%c", &t. top. sidel, &x) ;

printf("Please input the size of long side.\n");

printf("(The suggested long side is 20 -- 50)\n");

scanf ("%f%c", &t.top. side2, &x) ;

9

}
break;

default: break;

)
printf("Do you want to input or modify the thickness ");

printf("of the table? (y/n) \n") ;

scanf ("%c%c", &cl, &x) ;

if (cl=='y')

{
printf("Please input the thickness of the table. \n") ;

printf(" (The suggested thickness of the table top is i "- 5)\n");

scanf ("%f%c", &t. top. thickness, &x) ;

}
printf("Is there any notch on the top ?(y/n)\n");

printf(" (The notches on the table top is for the convenience ");

printf ("of leg orientation) \n") ;

scanf ("%c%c", &t. top. top_notch, &x) ;

if (t.top.top_notch=='y')

{
printf("Please input the number of notches.\n");

printf("(For the convenience of leg orientation\n");

printf("it's better to have the number of notches ");

printf("the same as the number of legs.)\n");

scanf (" %d%c", &t. top. notch_num, &x) ;

}
else

{
t. top. top_notch= 'n ' ;

t. top. notch_num=0 ;

}
}

printf("Do you want to input or modify the table legs?(y/n)\n");

scanf ("%c%c", &cl, &x) ;

if (cl=='y')

{
printf("Do you want to input or modify the number of legs?(y/n)\n");

scanf ("%c%c", &cl, &x) ;

if (cl=='y')

{
printf("Please input the number of table legs. \n");

printf("(The suggested number of legs is 4)\n");

scanf ("%d%c", &t. leg_num, &x) ;

}
printf("Are all the legs have the same size and the same shape ? (y/n)\n");

printf("(Same legs can minimize part variation.)\n");

scanf ("%c%c", &cl, &x) ;

if (cl=='y')

t. leg_variation = 'n ';
else

t.leg variation='y';

loop2 :

printf("You are now modifying leg[%d].\n",i) ;

l0

printf("Do you want to input or modify the shape of this leg?(y/n)\n");
scanf ("%c%c", &cl, &x) ;
if (cl=='y')
{
printf("Please input the shape of this leg (round, square,...) .\n") ;

printf("(The suggested shape of table leg is)");

printf("either round or square)\n");

scanf ("%s%c",t. leg[i], leg_shape, &x) ;

}
printf("Is this leg symmetrical in shape?(y/n)\n");

printf("(symmetrical leg gives great convenience for its feeding)\n");

scanf ("%c%c", &t. leg[i] .leg_sym, &x) ;

printf("Do you want to input or modify the length of this leg?(y/n)\n");

scanf ("%c%c", &cl, &x) ;

if (cl=='y')

{
printf("Please input the length of this leg.\n");

printf("(The suggested leg length is 25 -- 30)\n");

scanf ("%f%c", &t. leg[i], leg_length, &x) ;

}
if (t. leg_variation=='n')

for (i=2; i<t.leg_num+l; i++)

t. leg[i]=t. leg[I] ;
else

{
i++;
if (i<t. leg_num+l)

goto loop2;

}
}

printf ("\n\n\n") ;

}

sysdesign ()

/*

This function is used to design the table by the system

e.i. the system decide all the parameters of the table.

*/

{
int k;

strcpy(t.top.top_shape,"round");

t.top.diameter=30;

t.top.sidel=0;

t.top.side2=0;

t.top.thickness=3;

t.top.top_notch='y';

t.top.notch num=4;

ii

for (k=l; k<5; k++)
{
strcpy(t.leg[k].leg_shape,"round");

t.leg[k].leg_sym='y';

t.leg[k].leg_length=28;

}
t.,leg num=4;

t.leg_variation='n';

displaydata()

/*

This function is to display the parameters of the designed table.

*/

{
char c;

int il;

i=l;

printf("The designed table is as followsin");

printf (" in',) ;

printf("The topshape is %sin" ,t. top. top shape) ;

if (strcmp (t.top.top_shape, "round") ==0) c='a' ;

if (strcmp(t.top.top_shape,"square")==0) c='b';

if (strcmp(t.top.top_shape,"rectangular")==0) c='c';

switch (c)

{
case 'a': printf("The diameter of the table is %fin",t.top.diameter);

break;

case 'b': printf("The side of the table is %fin",t.top.sidel);

break;
case 'c':

printf("The sides of the table are %f",t.top.sidel);

printf(" by %fin",t.top.side2);

break;

default:break;

}
printf("The thickness of the table is %fin",t.top.thickness);

if (t.top.top notch=='y'll t.top.notch num!=0)

printf("There are %d top notchesin"?t.top.notch_num);

else

printf("There are no top notches for the leg orientation!in");

printf("The number of legs is %din",t.leg_num);

if (t.leg_variation=='n')

11=1;

else

il=t.leg num;

for (i=l; i<il+l; i++)

12 ¸

{
printf("The shape of the leg[%d] is %s\n",i,t.leg[i].leg_shape);

if (t.leg[i].leg sym=='y')
printf("leg[%d] is symmetrical\n", i);

else

printf("leg[%d] is NOT symmetrical! \n" , i) ;

printf ("The length of leg[%d] is %f\n", i,t. leg[i], leg_length) ;

}
if (t. leg_variation=='n')

printf("All legs have the same size and the same shape\n");

printf ("- - \n") ;

}

check ()

/*

This function is to check the design against the database.

c0=l, check against the standard database;

c0=2, check against the extended database;

*/

{
char c0,cl,c2;

j=0;

loopcheck:

printf("l -- Check against the standard database\n");

printf("2 -- Check against the expanded database\n");

printf(" Please enter your choice\n");

scanf ("%c%c", &cO, &x) ;

clear () ;

if ((c0!='l') && (c0!='2'))

goto loopcheck;

if (strcmp(t.top.top_shape,"round") ==0) cl='a';

if (strcmp (t. top. top_shape, "square") ==0) c i= 'a ';

switch (cl)

{
case'a': ; break;

default:

if (cO=='l')

{
j++;
WI=I;

printf("violation %d : ",j);

printf("table topshape is neither round nor square\n");

printf("Your design is %s. \n",t.top.top_shape);

printf("The preferred topshape is either round or square.\n");

}
if (C0=='2 ')

{

13

if (strcmp(t.top.top shape,topshape)==0)
break;
else
{

j++;
wl=l;

printf ("violation %d : ", j) ;

printf("table topshape cannot be found in database\n");

printf ("Your design is %s. \n", t. top. top_shape) ;

printf("The preferred topshape is either round or square.");
printf ("\n\n") ;

}
}

break;

}

if (strcmp (t. top. top_shape, "round")==0)
{

if ((c0=='!') && (t.top.diameter<r4 II t.top.diameter>r7))
{
j++;
w2=l;

printf("violation %d : ",j) ;

printf ("the diameter is out of range. \n") ;

printf("Your design is %f. ",t.top.diameter) ;

printf("The preferred diameter is between 20 to 40.\n");
}

if ((c0=='2') && (t.top.diameter<rm4 I I t.top.diameter>rm7))
{
j++; _ r

w2=l ; _i_ _ _

printf("violation %d : ",j) ;

printf("the diameter is out of range.\n");

printf("Your design is %f. ",t.top.diameter) ;

printf("The preferred diameter is between 20 tO 40.\n");
}

}
if (t. top. sidel !=r0)

{

if ((C0=='l') && (t.top.sidel<r3 II t.top.sidel>r6))
{
j++;
W3=I ;

printf ("violatio %d : ,,,j) ;

printf ("sidel is out of range. \n") ;

printf("Your design is %f. ",t.top.sidel) ;

printf("The preferred sidel is between I0 to 30.\n");
}

if ((c0=='2') && (t.top.sidel<rm3 II t.top.sidel>rm6))
{
j++;
W3=I;

printf ("violatio %d : sidel is out of range.\n",j);

14

printf("Your design is %f. ",t.top.sidel) ;
printf("The preferred sidel is between I0 to 30.\n");
}

}
if (t. top. side2 !=r0)

{
' ' t.top side2>r8))if ((c0=='l') && (t.top.side2<r4 ,,

{
j++;
w4=l;

printf("violatio %d : side2 is out of range.\n",j);

printf("Your design is %f. ",t.top.side2) ;

printf("The preferred side2 is between 20 to 50.\n");

}
if ((C0=='2') &&

{
j++;
w4 =i;

II(t.top.side2<rm4 ,, t.top.side2>rmS))

printf("violatio %d : side2 is out of range.\n",j);

printf("Your design is %f. ",t.top.side2);

printf("The preferred side2 is between 20 to 50.\n");

}
}

if ((c0=='l') && (t.top.thickness<rl

{
j++;

w5=l;

printf("violation %d :

'' t top thickness>r2))II ° "

thickness is out of range.\n",j);

printf("Your design is %f. ",t.top.thickness);

printf("The preferred thickness is between 1 to 5.\n");

}
if ((c0=='2') && (t.top.thickness<rml ,,'' t.top.thickness>rm2))

{
j++;
w5=l;

printf("violation %d : thickness is out of range.\n",j);

printf("Your design is %f. ",t.top.thickness);

printf("The preferred thickness is between 1 to 5.\n");

}
if ((c0=='l') && (t.top.top_notch!='y'))

{
j++;
w6=l;

printf("voilation %d ." no notches for the leg orientationi\n",j);

printf("The preferred design is to have notches on the top ");

printf("for leg orientation\n");

}
if ((c0=='2') && ((t.top.top_notch!='y ') && (t.top.top_notchl=rml0)))

{
printf("voilation %d : no notches for the leg orientation!\n",j);

printf("The preferred design is to have notches on the top ");

printf("for leg orientation\n");

15

}

if ((c0=='l') && (t.top.notch num!=t.leg_num))
{
j++;
w7=l;

printf("violation %d : notch# is not equal to leg#!\n",j);

,printf("notch number is %d, leg number is %d\n",t.top.notch num,t.leg num);
printf("Please modify the notch number\n"); -- -
}

if ((c0=='l') && (t.leg_numl=r9))
{
j++;
w8=l;

printf("violation %d : legs are not 4!\n",j);

printf("Your design is %d. ",t.leg_num);

printf("The preferred design is 4.\n\n");
}

if ((c0=='2')&& (t.leg_num!=rm9))

{
j++;

w8=l;

printf("violation %d : leg number cannot be found in databasel\n",j);

printf("Your design is %d. ",t.leg_num);

printf("The preferred design is 4.\n\n");
}

if ((c0=='l') && (t.!eg_variationl=,n,))

{
j++;

w9=l;

printf("voilation %d : legs are differentk_,,j);

printf("your design causes assembly difficulties\n");

printf("The preferred design is to minimize parts variation\n");
}

if ((c0=='2') && ((t.leg_variationl='n') && (t.leg_variation!=rmll)))
{
j++;
W9=I;

printf("voilation %d : legs are different\n",j);

printf("your design causes assembly difficulties\n");

printf("The preferred design is to minimize parts variation\n");
}

for (i=l; i<t.leg_num+l; i++)
{

if ((c0=='l') && (t.leg[i].leg_syml='y,))
{
j++;
wl0=l;

printf("violation %d : leg is not symmetrical.\n",j);

printf("your design for leg[%d] causes assembly difficulties.\n",i);

printf("The preferred design is to have all legs symmetrical.\n");
}

if ((c0=='2') && ((t.leg[i].leg_sym!=,y,) && (t.leg[i].leg_syml=rml2)))

16

{
j++;
WI0=I;

printf("violation %d : leg is not s_nmetrical.\n",j);

printf("your design for leg[%d] causes assembly difficulties. \n" ,i) ;

printf("The preferred design is to have all legs s_unetrical.\n");

}
}

for (i=l; i<t.ieg_num+l; i++)

{
if ((strcmpft. leg[i] •leg_shape, "round")==0)) c2='a' ;

if ((strcmp(t.leg[i].leg_shape,"square")==0)) c2='a';

switch (c2)

{
case'a': ; break;
default :

if (c0==' i')

{
j++;
wll=l ;

printf ("violation %d : ", j) ;

printf("legshape is neither round nor square.\n");

printf("Your design for leg[%d] ",i) ;

printf(" is %s. \n",t.leg[i].leg_shape) ;

printf("The preferred legshape is either round or square.\n");

}
if (c0=='2 ')

{
if (strcmp (t. leg [i] .leg_shape, legshape) ==0)

break;
else

{
j++;
wll=l;

printf ("violation %d : ", j) ;

printf("legshape cannot be found in database. \n");

printf("Your design for leg[%d]",i) ;

printf (" is %s. \n",t. leg[i], leg_shape) ;

printf("The preferred legshape is either round or square.");

printf ("\n") ;

}
}

break;

}
}

for (i=l; i<t.leg_num+l; i++)

{
if ((c0=='l') && (t.leg[i].leg_length<r5

{
j++;
w12=l;

printf("violation %d :

,,'' t.leg[i].leg_length>r6))

leglength is out of range.\n",j);

17

printf("Your design for leg[%d] is %f. ",i,t.leg[i].leg_length);
printf("The preferred design is between 25 to 30.\n");
}

• • '' t.leg[i] leg_length>rm6))if ((c0=='2') && (t leg[i] leg_length<rm5 ,,

{
j++;
w12=l;

printf("violation %d .- leglength is out of range.\n",j);

printf("Your design for leg[%d] is %f. ",i,t.leg[i].leg_length);

printf("The preferred design is between 25 to 30.\n");
}

}
if ((j==0) && (c0=='l'))

{
printf("No violation against ") ;

printf("the rules and guidelines in standard database\n\n\n\n\n\n") ;
}

if ((j==0) && (c0=='2'))

{
printf("No violation against the ");

printf("rules and guidelines in the extanded database\n\n\n\n\n\n");
}

}

update()

/*

This function allows the user expand the standard database.

*/

{
int m;

char ch;

m=0;

while (m==0)

{
clear () ;

printf (" Standard database

printf ("

if (wl==l)

printf("a: topshape (round or square)

if (w2==l)

printf("b: diameter (20 --40)

if (w3==l)

printf("c: sidel (I0 -- 30)

if (w4==l)

printf("d: side2 (20 -- 50)

if (w5==i)

printf("e: thickness (1 -- 5)

Extended database\n") ;

--\n") ;

%s\n", topshape) ;

_f "- %f\n",rm4,rm7);

%f -- %f\n",rm3,rm6) ;

%f -- %f\n",rm4,rm8) ;

%f -- %f\n",rml,rm2) ;

18

if (W6==l)
printf("f: table top has notches
if (w7==l)
printf("g: leg# = notch#
if (w8==l)
printf("h: number of legs (4)
if (w9==l)
printf("i: all legs are the same
if (wlO==l)
printf("j: each leg is symmetrical
if (wll==l)
printf("k: legshape (round or square)
if (w12==l)
printf("l: leg length (25 -- 30)
printf ("Please input the choice which you

specification\n") ;
printf ("Hit '0' key to exit modify the database. \n") ;
scanf("%c%c'!, &ch, &x) ;
switch (ch)

{
case 'a' :

printf("Please input the topshape of the table\n");

scanf ("%s%c", topshape, &x) ;

wl=0;

break;

case 'b' :

printf("Please input the lower bound of the diameter.\n");

scanf ("%f%c", &rm4, &x) ;

printf("Please input the upper bound of the diameter.\n");

scanf ("%f%c", &rm7, &x) ;

w2=0 ;

break;

case 'c' :

printf ("Please input the lower bound of sidel. \n") ;

scanf("%f%c", &rm3, &x) ;

printf("Please input the upper bound of sidel.\n");

scanf ("%f%c", &rm6, &x) ;

w3=0;

break;
case 'd' :

printf("Please input the lower bound of side2. \n");

scanf ("%f%c", &rm4, &x) ;

printf("Please input the upper bound of side2.\n");

scanf ("%f%c", &rm8, &x) ;

w4=0 ;

break;

case 'e' :

printf("Please input the lower bound of thickness. \n");

scanf ("%f%c", &rml, &x) ;

printf("please input the upper bound of thickness.\n");

scanf ("%f%c", &rm2, &x) ;

w5=0;

%c\n",rml0) ;

leg# <> notch#\n");

%d\n",rm9) ;

%c\n", rmll) ;

%c\n", rml2) ;

%s\n", legshape) ;

%f -- %f\n\n\n",rm5,rm6) ;

want to modify the above

19

break;
case ' f' :

printf("Please enter 'n', if you don't want ") ;
printf("to have notch on the table top\n");
scanf ("%c%c", &rmlO, &x) ;
w6=O;
break;

case 'g' :
w7=O;
break;

case 'h' :
printf("Please input the number of legs. \n") ;
scanf ("%d%c", &rm9, &x) ;
w8=O;
break;

case ' i' :
printf("Please enter 'n', if you don't want all legs the same\n");
scanf ("%c%c", &rmll, &x) ;
w9=O;
break;

case ' j ' :
printf("Please enter 'n', if you don't want ");
printf("the leg to be symmetrical\n");
scanf (,%c%c", &rml2, &x) ;
wlO=O;
break;

case 'k' :
printf("Please input the legshape of the tablekn");
scanf ("%s%c", topshape, &x) ;
wll=O;
break;

case ' i' :
printf("Please input the lower bound of leg length. \n");
scanf ("%f%c", &rmS, &x) ;
printf("Please input the upper bound of leg length.\n");
scanf ("%f%c", &rm6, &x) ;
w12=O;
break;

default:
m=l ;
break;

}

redesign()

This function helps the user modify his design.

If the use's design has some violations against the

2O

*!

rules and the guidelines, this module can eliminate

these violations automatically.

{
int 1 ;

if (wl==l)

{
strcpy (t. top. topshape, "round") ;

t.top.diameter=30;

t.top.sidel=O; t.top.side2=O;

wl=O ;

}
if (w2==l)

{
if (t.top.diameter<20) t.top.diameter=20;

else t.top.diameter=40;

w2=O;

}
if (w3==l)

{
if (t.top.sidel<lO) t.top.sidel=lO;

else t.top.sidel=30;

w3=O;

}
if (w4==l)

{
if (t.top.side2<20) t.top.side2=20;

else t.top.side2=50;

w4=O;

}
if (w5==l)

{
if (t.top.thickness<l) t.top.thickness=l;

else t.top.thickness=5;

w5=O;

}
if (w6==l)

{
t.top.top_notch='y';

t.top.top_notch=4;

w6=O;

}
if (w7==l)

{
t.top.notch_num=t.leg_num;

w7=O;

}
if (wS==l)

{
t.leg_num=4;

21

/
J
f

w8=O;

}

if (w9==l)

{

t.leg_variation='n,;

w9=O;

}
if "(wlO==l)

{

for (I=I; 1<5; i++)

t.leg[l].leg_sym='y';

wlO=O;

}

if (wll==l)

{

for (I=I; 1<5; i++)

strcpy(t.leg[l].leg_shape,"round,,);
wll=O;

}

if (w12==l)

{

if (t.leg[l].leg_length<25)

for (i=I; 1<5; i++)

t.leg[l].leg_length=25;
else

for (i=I; 1<5; i++)

t.leg[l].leg_length=30;
w12=O;

}

22

